
Mike Mitri

Carey Cole

James Madison University

 “The Open Web Application Security Project

(OWASP) is an open community dedicated to

enabling organizations to develop, purchase, and

maintain applications that can be trusted.”

 https://www.owasp.org

https://www.owasp.org/

 Application security tools and standards

 Complete books on application security testing,

secure code development, and security code

review

 Standard security controls and libraries

 Local chapters worldwide

 Cutting edge research

 Extensive conferences worldwide

 Mailing lists

 A1: Injection

 A2: Cross-Site Scripting (XSS)

 A3: Broken Authentication and Session Management

 A4: Insecure Direct Object References

 A5: Cross-Site Request Forgery (CSRF)

 A6: Security Misconfiguration

 A7: Insecure Cryptographic Storage

 A8: Failure to Restrict URL Access

 A9: Insufficient Transport Layer Protection

 A10: Unvalidated Redirects and Forwards

 Injection flaws, such as SQL, OS (Operating

System), and LDAP (Lightweight Directory

Access Protocol) injection, occur when

untrusted data is sent to an interpreter as part

of a command or query. The attacker’s hostile

data can trick the interpreter into executing

unintended commands or accessing

unauthorized data.

 Anything that a user can send or that can be

stored based on what a user sent:

 URL Parameters

 Input tags

 Text areas

 Form fields

 Cookies

 Databases

https://www.owasp.org/index.php/Top_10_2010-A1-Injection

https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection

SELECT LastName

FROM users

WHERE UserID = 1;

LastName (results)

Smith

userID Name LastName Login Password

1 John Smith jsmith hello

2 Adam Taylor adamt qwerty

3 Daniel Thompson dthompson dthompson

 The ability to inject SQL commands into the

database engine through an existing application

 Select

 Insert

 Update

 Delete

 Alter

 Drop

 Create

10

 ' or " character String Indicators

 -- or # single-line comment

 /*…*/ multiple-line comment

 + addition, concatenate (or space in url)

 || (double pipe) concatenate

 % wildcard attribute indicator

 ?Param1=foo&Param2=bar URL Parameters

 PRINT useful as non transactional command

 @variable local variable

 @@variable global variable

 waitfor delay '0:0:10' time delay

11

 It is one of the most the most common Website

vulnerability today!

 It is a flaw in "web application" development,

it is not a DB or web server problem

 Most programmers are still not aware of this problem

 A lot of the tutorials & demo “templates” are vulnerable

 Even worse, a lot of solutions posted on the Internet are not

good enough

 In OWASP tests over 60% of their clients turn out to be

vulnerable to SQL Injection

 Option #1: Use of Prepared Statements

(Parameterized Queries)

 Option #2: Use of Stored Procedures (not as

good as parameters)

 Option #3: Escaping all User Supplied Input

(not as good as option 1 or 2)

 Additional Defenses:

 Also Enforce: Least Privilege

 Also Perform: White List Input Validation

 Minimize the privileges assigned to every

database account in your environment. Do not

assign DBA or admin type access rights to your

application accounts.

 White list validation involves defining exactly what

is authorized, and by definition, everything else is

not authorized.

 Contrasted with Black List validation

 https://www.owasp.org/index.php/Data_Validation

https://www.owasp.org/index.php/Data_Validation

String SQL = "SELECT USERNAME,

PASSWORD, EMP_ID FROM [Login Credentials]

where USERNAME = '" + uName + "' and

PASSWORD = '" + pWord + "'";

When user enters ' or 1=1 -- as the value of

uName

SELECT USERNAME, PASSWORD, EMP_ID

FROM [Login Credentials] where USERNAME = ''

or 1=1 --' and PASSWORD = ''

String SQL = "SELECT USERNAME,

PASSWORD, EMP_ID FROM [Login Credentials]

where USERNAME = ? and PASSWORD = ?";

When user enters ' or 1=1 -- as the value of

USERNAME

now treated as all in quotes and should cause no

issue

Java
String SQL = "{call sp_getUserName(?,?)}";

Where ? Is an input parameter (UserName and Password)

SQL
CREATE PROCEDURE [dbo].[sp_getUserName]

 @UserName char(50),

 @Password char(50)

AS

BEGIN

 SELECT USERNAME, PASSWORD, EMP_ID FROM [Login

Credentials] where USERNAME = @UserName and PASSWORD =

@Password

END

 String sql = "SELECT USERNAME, PASSWORD,

EMP_ID FROM [Login Credentials] where

USERNAME = '" + txtUserName.Text + "' and

PASSWORD = '" + txtPassword.Text + "'";

 ' or 1=1; --

 ‘ or 1=1; DROP table Policy; --

 Grant, Alter, Others…

 XSS flaws occur whenever an application takes

untrusted data and sends it to a web browser

without proper validation and escaping. XSS

allows attackers to execute scripts in the victim’s

browser which can hijack user sessions, deface

web sites, or redirect the user to malicious sites.

https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)

https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)

 Inserting HTML and JavaScript into the browser

of an unsuspecting client via an unknowing

service provider operating on the Web.

 Breaking out of a data context and switching

into a code context

 Using of special characters that are significant to the

browser (i.e. HTML tags)

 A site with many examples:

 http://ha.ckers.org/xss.html#XSScalc

http://ha.ckers.org/xss.html

 OWASP cheat sheet specifies 8 “rules”

 https://www.owasp.org/index.php/XSS_Prevention_C

heat_Sheet#XSS_Prevention_Rules

 The two most important are:

 HTML Escape Before Inserting Untrusted Data into

HTML Element Content

 Attribute Escape Before Inserting Untrusted Data into

HTML Common Attributes

 Escaping = output encoding

https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet

http://www.w3schools.com/html/html_entities.asp

http://www.w3schools.com/html/html_entities.asp

 Job posting site (like monster.com)

 Employers page(s)

 Job candidate’s page(s)

 This is an example of persistent (stored) XSS

 Bad guy stores client side script into server’s

database

 For a similar example, see the following social

networking example:
 http://en.wikipedia.org/wiki/Cross-

site_scripting#Exploit_examples

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

Bad guy generates HTML code
containing a <form> element…

badguy.

badguy.

The form’s action goes to the bad guy’s site…

…by inducing the victim to click a button (social engineering)

The XSS includes JavaScript…this is a common
feature of Cross-site scripting

…which is invoked if the victim clicks the button

The JavaScript modifies the form’s action by sending
the contents of the email and password tags to the bad
guy’s server as URL parameters …

The bad guy has received the private information from the
employer’s (victim’s) web page.

The sensitive information was NOT obtained from the database. It
was received directly from a page displayed on a browser for a client
who was using the job posting site.

HTML code for the job candidate page with form’s input tags.

The Job Posting Site’s

Job Candidate Page

Despite the use of parameterized queries,
there is still an XSS vulnerability because user
input goes directly into the database without
being HTML-encoded.

JSP code for the job candidate page

Bad guy enters evil script here, and submits...

…and now the evil script has been
stored at the job-posting database.

badguy.com

Employer page code…here is candidate-choice logic.

When selects a candidate, the candidate’s information
is retrieved from the database and displayed on the
page...

That’s when the XSS vulnerability begins to affect the
employer!

Employer logs in...

...and is presented with a list of job candidates

If employer picks a legitimate job candidate...

…information about that candidate will be displayed

But if the employer picks the bad guy…

…he is prompted to click a button (social engineering)

…and if he clicks the button, his sensitive data goes to
the bad guy’s site!

 Involves functions for escaping…

 In this example, to implement HTML escaping

on the AboutMe input, we simply make the

following replacement:

stmt2.setString(1,encodedAboutMe);

String encodedAboutMe =

 ESAPI.encoder().encodeForHTML(user.getAboutMe());

stmt2.setString(1,encodedAboutMe);

This is what gets stored in the database when using the
ESAPI encoder’s encodeForHTML() method.

This is what the employer sees if Joe Badguy is selected.

Now, rather than injecting the code, the browser just displays it (a result
of HTML encoding/escaping).

http://www.securityninja.co.uk/wp-content/uploads/2009/10/InputVALESAPI.jpg

 “OWASP recommends that organizations

establish a strong foundation of training,

standards, and tools that makes secure coding

possible. On top of that foundation,

organizations should integrate security into their

development, verification, and maintenance

processes. Management can use the data

generated by these activities to manage cost

and risk associated with application security.”

 Standardize

 Code Reviews

 Test the Application

 OWASP Testing Guide

 OWASP/Training/OWASP WebGoat Project

 Penetration Testing – WebScarab

 Start Security Program

 Risk Portfolio

?

