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US venture activity in Al/ML
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* One reason:

— Some impressive results using deep neural networks
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* Define an Error Function:

Lw,D)= ) (y; —a(w,x;))’
(xi,y:)€D
* Find the gradient of the error function with respect to
the weights:

VwL(w,D)

* Take small steps in the direction of the gradient:

w W —aVyL(w, D)



* Forward Pass: Activation )

* Backward Pass:




Error Signal
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Inception Networks
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* Architectural tweaks:

_ Residual Networks
Rectified Linear Units

Inception Networks

* Hardware advances:
TPU

GPGPU
Cluster Computing

* Tweaks to the training algorithms:

Batch Normalization
Dropout RMSProp/Adagrad /Adam
* Better frameworks:

Tensorflow Caffe/Caffe2 Keras
Pytorch

CNTK



Logistic Regression

Three-layer Neural Networks
Naive Bayes

K-Nearest Neighbors

Linear Discriminant Analysis
Decision Trees

Random Forests

Support Vector Machines




* Good news... More training data leads to higher

accuracy:
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* Bad news.. Algorithm doesn’t scale:
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* Shallow algorithm that can handle massive training
data:
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* Promising! Let's try more data..
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* Nope. Performance asymptote.
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« Hinton et. al. Demonstrate that deep networks can be trained
using a layer-wise pre-training strategy
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Hinton et. al. demonstrate that deep networks can be trained 2006
using a layer-wise pre-training strategy
AlexNet crushes “ImageNet Large Scale Visual Recongnition 2012
Challenge”
(Now there are several published results that achieve better-
than-human accuracy)
DeepMind achieves super-human performance on Atari 2600 2015
Games
Google Neural Machine Translation (60% drop in translation 2016
errors)
DeepMind (Google) achieves super-human performance on 2016
Go. (Learning from Human games)
Super-human performance on Go (Self-play only) 2017 2017

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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Data Hungry. Results are only as good as the data.

— Atari, Go — No Problem
— Physical Robots/Self Driving Cars — Much harder to get the data

Tackling a new problem requires a lot of trial and error and
parameter tuning

Training is computationally expensive

Suffers from the same problem Al has always had:
— Impressive successes on narrowly defined tasks BUT

— General problem solving is still hard

See Also: G. Marcus, “Deep Learning: A Critical Appraisal,” arXiv:1801.00631, Jan. 2018.
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