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Why The Hype?

● One reason:
– Some impressive results using deep neural networks



  

Neurons

Introduction to Psychology - 1st Canadian Edition by Charles Stangor
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Artificial Neurons

Non-linearityNeuron



  

Neural Network Example

...

Training Data Network



  

Gradient Descent
● Define an Error Function:

● Find the gradient of the error function with respect to 
the weights: 

● Take small steps in the direction of the gradient:



  

Backpropagation

● Forward Pass:

● Backward Pass:

Activation

Error Signal



  

Vanishing Gradients

Error Signal



  

Why Does Deep Learning 
Work Now?

● Architectural tweaks:
Rectified Linear Units

Residual Networks

Inception Networks
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Why Does Deep Learning 
Work Now?

● Architectural tweaks:

● Hardware advances:

● Tweaks to the training algorithms:

● Better frameworks:

Rectified Linear Units
Residual Networks

Inception Networks

GPGPU
TPU

Cluster Computing

RMSProp/Adagrad/Adam

Batch Normalization
Dropout

Tensorflow
Pytorch

Caffe/Caffe2 Keras
CNTK



  

“Shallow” Learning
● Logistic Regression
● Three-layer Neural Networks
● Naive Bayes
● K-Nearest Neighbors
● Linear Discriminant Analysis
● Decision Trees
● Random Forests
● Support Vector Machines
● ...



  

Shallow Learning 
Potential Problem #1

● Good news… More training data leads to higher 
accuracy:
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Shallow Learning 
Potential Problem #2

● Shallow algorithm that can handle massive training 
data:

● Promising! Let’s try more data… 



  

Shallow Learning 
Potential Problem #2

● Shallow algorithm that can handle massive training 
data:

● Promising! Let’s try more data… 

● Nope. Performance asymptote. 



  

The Nice Thing About 
Deep Learning…

Silver, David, et al. "Mastering the game of Go without human knowledge." Nature 550.7676 (2017): 354.

80+ Layers 6,000,000,000+ board positions



  

Notable Deep Learning 
Successes

● Hinton et. al. Demonstrate that deep networks can be trained 
using a layer-wise pre-training strategy

2006
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using a layer-wise pre-training strategy

2006

● AlexNet crushes “ImageNet Large Scale Visual Recongnition 
Challenge” 

(Now there are several published results that achieve better-
than-human accuracy) 

2012

● DeepMind achieves super-human performance on Atari 2600 
Games

2015

● Google Neural Machine Translation (60% drop in translation 
errors)

2016

● DeepMind (Google) achieves super-human performance on 
Go. (Learning from Human games)

2016

● Super-human performance on Go (Self-play only) 2017 2017



  

What’s The Catch?
● Data Hungry. Results are only as good as the data.

– Atari, Go – No Problem
– Physical Robots/Self Driving Cars – Much harder to get the data

a
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What’s The Catch?
● Data Hungry. Results are only as good as the data.

– Atari, Go – No Problem
– Physical Robots/Self Driving Cars – Much harder to get the data

● Tackling a new problem requires a lot of trial and error and 
parameter tuning

● Training is computationally expensive
● Suffers from the same problem AI has always had:

– Impressive successes on narrowly defined tasks BUT
– General problem solving is still hard

See Also: G. Marcus, “Deep Learning: A Critical Appraisal,” arXiv:1801.00631, Jan. 2018. 



  

Questions?
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