Deep Neural Networks: How They Work and When They Don't

Nathan Sprague SVTC Luncheon November 15 28, 2018

Outline

- Machine Learning Boom (Bubble?)
- Neural Network Mechanics
- Shallow vs. Deep Learning
- Deep Learning Successes
- Reasons For Skepticism

AI/ML VC Money

US venture activity in AI/ML

NIPS Conference Registrations

NIPS Conference Registrations

From the NIPS 18 Conference Page

Why The Hype?

- One reason:
 - Some impressive results using deep neural networks

Neurons

Introduction to Psychology - 1st Canadian Edition by Charles Stangor

Artificial Neurons

Neuron

Non-linearity

Neural Network Example

Training Data

 \mathbf{x} y

 $egin{smallmatrix} eta & eta \ eta & 1 \end{matrix}$

 $\nearrow 0$

 $ec{oldsymbol{\beta}}
ightarrow \hat{1}$

 $\rightarrow 0$

 $oldsymbol{7}
ightarrow 0$

 $\overrightarrow{z} \rightarrow 0$

 $7 \rightarrow 0$

 $1 \rightarrow 1$

 $\rightarrow 0$

 $I \rightarrow 0$

 $\rightarrow 1$

:

Network

 \mathbf{X}

Gradient Descent

Define an Error Function:

$$L(\mathbf{w}, D) = \sum_{(\mathbf{x_i}, y_i) \in D} (y_i - a(\mathbf{w}, \mathbf{x}_i))^2$$

• Find the gradient of the error function with respect to the weights:

$$\nabla_{\mathbf{w}} L(\mathbf{w}, D)$$

Take small steps in the direction of the gradient:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}, D)$$

Backpropagation

• Forward Pass: Activation

Backward Pass:

Vanishing Gradients

Architectural tweaks:

Rectified Linear Units

Residual Networks

Inception Networks

Architectural tweaks:

Rectified Linear Units

Residual Networks

Inception Networks

Hardware advances:

GPGPU

TPU

Cluster Computing

Architectural tweaks:

Rectified Linear Units

Residual Networks

Inception Networks

Hardware advances:

GPGPU

TPU

Cluster Computing

Tweaks to the training algorithms:

Batch Normalization

Dropout

RMSProp/Adagrad/Adam

Architectural tweaks:

Rectified Linear Units

Residual Networks

Inception Networks

Hardware advances:

GPGPU

TPU

Cluster Computing

Tweaks to the training algorithms:

Batch Normalization

Dropout

RMSProp/Adagrad/Adam

Better frameworks:

Tensorflow

Caffe/Caffe2

Keras

Pytorch

CNTK

"Shallow" Learning

- Logistic Regression
- Three-layer Neural Networks
- Naive Bayes
- K-Nearest Neighbors
- Linear Discriminant Analysis
- Decision Trees
- Random Forests
- Support Vector Machines
- ...

Shallow Learning Potential Problem #1

• Good news... More training data leads to higher accuracy:

6000 ENOUGH

Shallow Learning Potential Problem #1

• Good news... More training data leads to higher accuracy:

Bad news... Algorithm doesn't scale:

Shallow Learning Potential Problem #2

 Shallow algorithm that <u>can</u> handle massive training data:

• Promising! Let's try more data...

Shallow Learning Potential Problem #2

• Shallow algorithm that <u>can</u> handle massive training data:

PERFORMANCE

10.000

AMOUNT OF TRAINING DATA

Promising! Let's try more data...

Nope. Performance asymptote.

The Nice Thing About Deep Learning...

Hinton et. al. Demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006

Hinton et. al. demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006
 AlexNet crushes "ImageNet Large Scale Visual Recongnition Challenge" (Now there are several published results that achieve better- than-human accuracy) 	2012

Hinton et. al. demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006
 AlexNet crushes "ImageNet Large Scale Visual Recongnition Challenge" (Now there are several published results that achieve better- than-human accuracy) 	2012
DeepMind achieves super-human performance on Atari 2600 Games	2015

Hinton et. al. demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006
 AlexNet crushes "ImageNet Large Scale Visual Recongnition Challenge" (Now there are several published results that achieve better- than-human accuracy) 	2012
 DeepMind achieves super-human performance on Atari 2600 Games 	2015
 Google Neural Machine Translation (60% drop in translation errors) 	2016

Hinton et. al. demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006
 AlexNet crushes "ImageNet Large Scale Visual Recongnition Challenge" (Now there are several published results that achieve better- than-human accuracy) 	2012
 DeepMind achieves super-human performance on Atari 2600 Games 	2015
 Google Neural Machine Translation (60% drop in translation errors) 	2016
DeepMind (Google) achieves super-human performance on Go. (Learning from Human games)	2016

Hinton et. al. demonstrate that deep networks can be trained using a layer-wise pre-training strategy	2006
 AlexNet crushes "ImageNet Large Scale Visual Recongnition Challenge" (Now there are several published results that achieve better- than-human accuracy) 	2012
DeepMind achieves super-human performance on Atari 2600 Games	2015
 Google Neural Machine Translation (60% drop in translation errors) 	2016
DeepMind (Google) achieves super-human performance on Go. (Learning from Human games)	2016
Super-human performance on Go (Self-play only) 2017	2017

What's The Catch?

- Data Hungry. Results are only as good as the data.
 - Atari, Go No Problem
 - Physical Robots/Self Driving Cars Much harder to get the data

What's The Catch?

- Data Hungry. Results are only as good as the data.
 - Atari, Go No Problem
 - Physical Robots/Self Driving Cars Much harder to get the data
- Tackling a new problem requires a lot of trial and error and parameter tuning
- Training is computationally expensive

What's The Catch?

- Data Hungry. Results are only as good as the data.
 - Atari, Go No Problem
 - Physical Robots/Self Driving Cars Much harder to get the data
- Tackling a new problem requires a lot of trial and error and parameter tuning
- Training is computationally expensive
- Suffers from the same problem AI has always had:
 - Impressive successes on narrowly defined tasks BUT
 - General problem solving is still hard

Questions?